
Summer Research: SPEARS 3D Microscope ∗

Pranav Konda

1 Abstract

Implementation and benchmarking of 3D reconstruction algo-
rithms was done in C++ in order to drive a solid-state micro-
scope capable of returning 3D topographic maps of planetary
surfaces at a granular level. Using a support vector machine, a
data quality evaluation program was created, using image sharp-
ness metrics, in order to tag images that should not be analyzed
in the microscope pipeline. Progress is being made to analyze
the sharpness of regions within images to disregard their recon-
struction output. Furthermore, image segmentation is being ex-
plored, in order to identify interesting objects in soil regolith and
on planetary surfaces.

2 Motivation

Microscopy is a valuable tool for gathering data across plane-
tary bodies, whether that be on the Earth or another extrater-
restrial body. Due to its high resolution, microscopy is partic-
ularly suited to analyze the fine details of the surfaces, which
often yields very insightful data on planetary surface composi-
tion. Microscopes in space are not uncommon, such as the Mars
Hand Lens Imager aboard the Curiosity rover. [3]

However, such devices do not have the resolution required to
image individual soil granules and regolith. Furthermore, the
rovers they are placed on are often too large to reach certain
environments. This project proposes a high-resolution minia-
ture solid state 3D microscope, with capabilities to reconstruct
three dimensional topographic maps of planetary surfaces from
image data. This device is targeted for next generation versatile
small robotic platforms, such as a CubeRover, which can reach
places previously unreachable. It is also lightweight, weighing
150 grams. [3]

Due to the dangers of these areas, a robust device is needed to
withstand the harsh natural conditions of these environments.
This microscope has no moving parts, making it solid state, and
has one optical pathway. A transparent liquid crystal display
functions as a programmable aperture, while a constellation of
LEDs allows for the incident illumination to be controlled at
various angles. [3]

Using a combination of light field imaging (multiview stereo
reconstruction) and photometric stereo (shake from shading al-
gorithms), the device can provide both reflectance data and to-
pographic data of the environment. [3]

The device uses a Rock Pi S embedded computer, which mea-
sures around 1.6in on all sides. This specific device is remarkable
in its low power usage, but this comes at a cost of performance.
This requires all algorithms to be optimized for this embedded
system.

3 Reconstruction Algorithms

3.1 Methods and Frameworks

To accomplish the aforementioned photometric stereo and light
field imaging, various reconstruction algorithms were imple-
mented to return a 3D reconstruction of the surface from an im-
age stack. However, these were implemented using MATLAB,

∗NASA Ames Research Center, Mountain View, CA

which is not ideal for the embedded hardware the device tar-
gets. Rewriting the prototype code in a more performant frame-
work and language was necessary, while attempting to preserve
as much functionality as possible.

C++ was chosen as the primary language for development
due to its high performance and extensive library support. To
emulate the image processing and computer vision functions of
MATLAB, OpenCV was chosen both for its ease of use and high
performance. MATLAB is notable in its powerful linear algebra
functions, and to emulate this Eigen was used, due to it being
very lightweight (as it is completely static, only template code
in its headers) and for its ease of use with OpenCV.

3.2 Algorithms

Two primary algorithms were used for reconstruction, a multi-
view stereo algorithm and a photometric stereo (shake from
shading) algorithm. The photometric stereo algorithm func-
tions better on a smooth monotone surface, while the multi-view
stereo algorithm functions better on rough and heterogeneous
surfaces. Employing both of these algorithms, and combining
their output into a final stack ensures a generally more accurate
reproduction.

3.2.1 Multiview Stereo

This algorithm is based on processing different images taken of
the same scene at different angles to create a height map. A mul-
tiview stereo correlation is computed to reconstruct the height
of the sample, using multiple image pairs. These pairs have a
shift which can be calculated according to the parallax shift p,
where

p = h
a

f0
,

where h is the object height, a is the aperture distance off axis,
and f0 is the objective lens focal length. [3] Once this shift is

Figure 1: Calculation of the parallax shift.

finished, the Normalized Cross Correlation (NCC) between
the images in the pair is calculated for a small window centered
around each corresponding pixel in the image. For windows with
pixel values of ai and bi, the NCC is calculated as

NCC(a, b) =

∑
i(ai − a)(bi − b)√∑

i(ai − a)2
∑

i(bi − b)2
, (1)

1



where a bar denotes the mean. For each possible height, the
candidate height with the greatest mean NCC is chosen as the
height for that pixel. [3] No exclusive library functions were used

Figure 2: Calculation of the candidate height from greatest mean
NCC.

when rewriting this code, meaning there are no performance dis-
crepancies in the prototype implementation and the C++ im-
plementation down to floating point accuracy.

3.3 Performance and Benchmarking

The Shake from Shading (photometric stereo) has not finished
being ported, so no comments can be made on accuracy or time
execution. Most of the general computation time is spent on
that algorithm and the multiview stereo algorithm. Proper full
suite benchmarks have not been conducted yet, but from basic
observation of compile times and execution times the speed of
execution has improved, as expected. No excessive memory us-
age has been detected yet, which could be a potential problem
on the embedded hardware if detected later. We are flexible in
what computation could be sent back to Earth via downlinking,
so a specific benchmark does not have that much importance yet
for the embedded hardware, but this should be determined soon.

In the future, proper benchmarks of the multiview stereo al-
gorithm should be conducted on both benchtop and embedded
hardware to get a detailed sense of execution times. Progress
should be made on rewriting the photometric stereo algorithm
as well, enabling the combining process to be implemented and
a full stack benchmark to be conducted.

4 Data Quality and Segmentation

4.1 Motivation

Image and data processing is very relevant for measuring data
quality, and attempting to classify what the reconstruction out-
put actually is. Data quality is important as execution time
should not be wasted on faulty data, as this produces output
that will not be useful. Material segmentation of the reconstruc-
tion output, and by extension classification enables us to see the
boundaries between objects, and get a classification of what each
object is. This is of particular use to planetary scientists as it
helps them distinguish between critical objects (for instance, re-
flective or crystalline material) to analyze and regular regolith
and surface soil.

4.2 Methods

As these were prototypes of a more robust future system, Python
was chosen due to its extensive library support and ease of imple-
mentation. Once again, OpenCV was used, along with Numpy
for linear algebra and Scikit-Learn for machine learning models.
The OpenCV implementation in Python, however, is simply a
wrapper for the C ABI underneath, so it is performant enough
to be used in production.

4.3 Blur Detection

One primary way to control data quality is blur detection: check-
ing whether the input images from the microscope are blurry and
out of focus. Such an image would waste computation power if it
were to be constructed, as the lack of fine resolution would cause
strange and useless outputs from the reconstruction algorithms.

4.3.1 Metrics

Two metrics were used, the Laplacian Variance and the Mean
Gradient Magnitude.

• Laplacian Variance: We can convolve the image with a
discrete Laplacian operator, and find the variance [2]:

φ = Var (∆[x, y]),

where

∆ = I

0 1 0
1 −4 1
0 1 0

 .
I denotes the image.

• Mean Gradient Magnitude: This is also known as the
Tenengrad method. We can calculate the mean gradient
magnitude, where the gradient is computed by the norm of
the Sobel filters [2]:

φ =
1

n

∑
x,y

√
∇x[x, y]2 +∇y[x, y]2

where

∇x = I

−1 0 1
−2 0 2
−1 0 1


and

∇y = I

−1 −2 −1
0 0 0
1 2 1

 .
4.3.2 Training and Model Selection

A public dataset [4] was used, containing 10,000 scenes with 2
images each, one in focus and one out of focus. A Python script
was used to calculate the values of the metrics for each image.
The data was then plotted below:

Figure 3: Plot of the data, where blue points are sharp images,
and red points are blurred images.

A support vector machine was chosen as a way to classify
the images into one of two classes: sharp or blurred. This was
implemented in Python using the scikit-learn.SVC() object.
A radial basis function (RBF) was used as the kernel. A γ value
of 10−1 was used along with a C value of 100. To handle the
data, numpy was used while opencv was used to actually compute
the Laplacian Variance and Mean Gradient Magnitude.

2



4.3.3 Testing

Another public dataset [1], consisting of 1050 images, was used
for unit testing. From these, 350 sharp and 350 blurred images
were chosen. The images were preprocessed by the same script
that the training data was processed by, stored in a file, and
tested using the Support Vector Machine, which was dumped as
an object and easy to access. A short C++ script was created to
test the expected values against the observed values, and report
the total accuracy along with a side-by-side comparison.

4.3.4 Biasing

Initially, the model did not report results in acceptable error
ranges: many images were being tagged as sharp when they
were actually blurry, a Type II error, which was undesirable. To
solve this, a biasing technique was used. By scaling the training
data values by a factor of 5, the distinction between the space of
blurry images and the space of sharp images was widened. This
allows the Support Vector Machine to be more accurate in its
classification. By using this technique, the model became more
accurate and had less false negatives.

4.3.5 Results

A total of 23 differences were measured, yielding a total accuracy

of 677
700

=⇒ ≈ 96.7% across the test data. Here we take positive
to be an image that is identified as blurred:

Predicted

Positive Negative

A
ct
u
a
l

Positive 337 13

Negative 10 340

Table 1: Confusion matrix for the test data.

4.3.6 Future Progress

Proper benchmarking must be done on the embedded hardware
in order to determine whether further optimization is necessary.
Work is being done to shift the algorithm from an entire image
classifier to one which would determine blurred regions of images,
the currently proposed method for this is by a sliding window
algorithm where such regions could be identified by metric scores.

Exploration is also being made in the realm of image segmen-
tation, in order to identify interesting objects within the data.
One proposed method is Mask R-CNN, which requires a cus-
tom dataset to implement. This process is time consuming as
boundaries must be manually traced. Segmenting using blur
maps is also a potential solution, and further processing could
be done with a variable size sliding window algorithm.

5 References

References

[1] Aleksey Alekseev. Blur Dataset. Online. Can be found here:
https://github.com/Kwentar/blurdataset. 2019.

[2] Charles Hermann et al. “Learning to Autofocus”. In:
(2020). doi: https://arxiv.org/abs/2004.12260v3.

[3] Gustav M. Petterson et al. “Miniature 3D Microscope and
Reflectometer for Space Exploration”. In: IEEE Interna-
tional Conference on Computational Photography (2019).
doi: https://doi.org/10.1109/ICCPHOT.2019.8747331.

[4] Jaesung Rim et al. “Real-World Blur Dataset for Learning
and Benchmarking Deblurring Algorithms”. In: Proceedings
of the European Conference on Computer Vision (ECCV).
2020.

3


